S(t)=16t^2+64t+16

Simple and best practice solution for S(t)=16t^2+64t+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S(t)=16t^2+64t+16 equation:



(S)=16S^2+64S+16
We move all terms to the left:
(S)-(16S^2+64S+16)=0
We get rid of parentheses
-16S^2+S-64S-16=0
We add all the numbers together, and all the variables
-16S^2-63S-16=0
a = -16; b = -63; c = -16;
Δ = b2-4ac
Δ = -632-4·(-16)·(-16)
Δ = 2945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{2945}}{2*-16}=\frac{63-\sqrt{2945}}{-32} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{2945}}{2*-16}=\frac{63+\sqrt{2945}}{-32} $

See similar equations:

| 20-(3/4x)=19 | | (0,1x^2)+16x-205=0 | | 20-3/4x=19 | | z/8+6=-63 | | 5x-x=58 | | 2a-18+3a-5+2a-19=180 | | 3x+9=–6 | | 24=5u+u | | (0,1^2)+16x-205=0 | | z/8+6=−63 | | x+2=-3(x+1) | | -3(5w-7)+9w=9+2(5w-3) | | z/9+3=12 | | 6x+4(x+9)=-2 | | 4n+22.95=2n+68.85-4 | | 4n+22.95=2n+68.95-4 | | 32=9w-5w | | 3x+x+16+x+10=180 | | 1/4x=7-3/8x | | (2t+2t^-2)/(2t-2t^-2)=0 | | 7z–5z=2 | | 44+89+y-24=180 | | (6w+2=)(4) | | (x*12)+32=180 | | 90+35+s-14=180 | | 150m-125m+43425=45225-200m | | 3x+8=10-x | | k/9+3=148 | | 2x+9+5x-30=180 | | 0=2x2+12x–14 | | 3b+8≥=14 | | 5^2x-2=5^8+7x |

Equations solver categories